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of a r o t a t i n g  disk on 

heat t r a n s f e r  and on the flow f i e l d  about t h e  disk are studied. Consideration i s  

given t o  gaseous systems which a re  composed of e i t h e r  one or  two component gases. 
t 
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Solutions of the  equations which govern t h e  hydrodynamics, energy t ransfer ,  and mass 

diffusion have been obtained over t h e  e n t i r e  range from large suction v e l o c i t i e s  t o  
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l a rge  blowing v e l o c i t i e s .  R e s u l t s  a re  given for the  veloci ty ,  temperature, and mass 

f r a c t i o n  d is t r ibu t ions ,  as w e l l  as f o r  t h e  heat t ransfer ,  mass t ransfer ,  and torque 

requirements. The e f f e c t s  of t h e  mass t r a n s f e r  a re  discussed i n  detai l .  It i s  

shown that f l u i d  in jec t ion  sharply decreases the  heat t r a n s f e r  at t h e  surface. 
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spec i f ic  heat a t  constant pressure 

coef f ic ien t  of diffusion 

dimensionless veloci ty  var iables  defined i n  equation (9b) 

heat t r a n s f e r  coeff ic ient ,  q/(Tw - T,) 

thermal conductivity 

t o r  que 

rate of mass flow d 

Nusselt number, h (i) /k 
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dimensionless pressure defined by equation (9b) 

Prandt l  number, v / a  = cpp/k - 

*(r 
heat t ransfer  r a t e  per uni t  area 

radial coordinate 

Schmidt number, v/D 
~ r .  

-: '/ s t a t i c  temperature b .  

convective veloci ty  components * .  



a, 

6 

e 
a) 
M 

w Y c ”  
V 

P 

cp 

u) 

Subscripts:  
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d i f fus ive  3loci t  
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r components 

mass f r ac t ion ,  p i / p  

coordinate measuring distance normal t o  d isk  s u r f  ace 

thermal d i f f u s i v i t y  

thickness  of viscous or thermal layers  (see subscr ip ts )  

dimensionless independent coordinate, ( ( . / v ) ~ / ~  z 

dimensionless temperature, (T  - T,)/(T, - T,) 

absolute v i scos i ty  

kinematic v i scos i ty  

densi ty  

shear s t r e s s  components at the  d isk  surface 

dimensionless mass f r ac t ion ,  (W1. - Wlm)/(Wlv - Wl,) 

angular coordinate 

angular ve loc i ty  

component 1, di f fus ing  gas 

cansonent 2,  main stream gas 

ambient conditions (z  -+ CO) 

convect ive 

d i  f f u s ive  

displacement 

r e f e r s  t o  en ter ing  temperature of coolant 

momentum 

thermal 

conditions at surface ( z  = 0) 
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INTRODUCTION 

The pioneering s t u d y  of f l u i d  flows i n  which there  is  mass addition or  mass re- 

moval at a bounding surface w a s  car r ied  o u t  by Prandt l  i n  1904. H i s  a t t e n t i o n  w a s  

d i rec ted  toward control  of the  boundary layer  on aerodynamic bodies, an end which 

can be achieved b y  sucking f l u i d  away through s l o t s  i n  the  surface. Invest igat ion 

of the problem of boundary-layer suction has continued up t o  the  present. Results 

of these suct ion s tudies  may a l so  be applied when the mass removal comes about due 
a3 
M 7 t o  f reez ing  ( i .e . ,  ic ing)  at  the  surface. 
w 

I n  recent  y e a r s ,  considerable i n t e r e s t  has a l s o  been shown i n  mass addi t ion t o  

boundary layer  flows, especial ly  i n  connection with the cooling of turbine blades 

and the sk ins  of high speed aero-vehicles. Such a cooling process, frequently 

termed t ranspi ra t ion ,  might u t i l i z e  a porous surface through which a coolant, e i t h e r  

a gas or l iqu id ,  i s  forced. I n  the  case of a l i q u i d  coolant, evaporation would take 

place due t o  t h e  hot boundary layer  gases, and the l a t e n t  heat of vaporization would 

thus be u t i l i z e d .  I n  an a l t e r n a t e  technique of t r a n s p i r a t i o n  cooling, the surface 

of t h e  vehic le  would be fabr ica ted  of a material  which would evaporate and hence 

cool t h e  boundary layer .  

From this  discussion, it is  c l e a r  t h a t  an a t tack  on the problem of f l u i d  in jec-  

t i o n  o r  removal involves consideration of t h e  flow v e l o c i t i e s ,  t h e  heat t r a n s f e r ,  

and the  mass t ransfer .  

has been made by Hartnett  and Eckert (ref. 1). 

For boundary layer  flows, a fundamental s t u d y  o f ' t h i s  type 

As a l o g i c a l  f irst  step,  they ex- 

amined the  laminar boundary-layer equations f o r  the case of a two component gas 

where t h e  proper t ies  of the  diffusing gas were -identical t o  those of the  free-stream 

f l u i d .  

which t h e  proper t ies  of the  separate components a r e  not too d i f f e r e n t  (and, of 

The r e s u l t s  of such an analysis  can be appl ied t o  two-component systems i n  

course, t o  one component systems). 

i s  t h a t  it indica tes  bas ic  trends and behavior pat terns .  

But an even grea te r  u t i l i t y  of such an analysis  

I n  t h e  present invest igat ion,  we turn t o  an al together  d i f f e r e n t  physical  con- 

f i g u r a t i o n .  The system t o  be studied, shown scl;!ematically i n  f igure 1, i s  a 
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r o t a t i n g  disk immersed i n  a la rge  body of otherwise quiescent f l u i d .  Motions a re  

in2uced within the  f l u i d  by the  ro ta t ion  of the  disk.  Mass t r a n s f e r  t o  or from the  

f l u i d  may take place at the  surface of the disk, e i t h e r  by d i r e c t  in jec t ion  o r  suc- 

t ion ,  or e l s e  by phase change. 

a l l  points  on t h e  disk surface.  

ence i n  temperature between the  ambient f l u i d  and the  surface of the disk. 

first s tep,  we study t h i s  problem by using the same assumptions about f l u i d  proper- 

t i e s  as has been mentioned i n  connection with reference 1. The solut ions and r e -  

s u l t s  thus obtained cons t i tu te  a fundamental body of information which provides in-  

s igh t  i n t o  behavior pa t te rns  and may also be of d i r e c t  appl icat ion t o  s ing le  com- 

ponent or  t o  two-component gases. Consideration w i l l  be given here t o  the e n t i r e  

range of mass t ransfers ,  extending from la rge  suct ion through small suction and in-  

j e c t i o n  t o  large in jec t ion .  

The r a t e  of mass addi t ion or removal i s  uniform at 

Heat t ransfer  may a l s o  take place due t o  a d i f f e r -  

As a 

A modest beginning on t h i s  problem has been made by Stuar t  (ref.  2 ) .  He con- 

f ined  h i s  a t ten t ions  t o  t h e  e f f e c t s  of suction on t h e  veloci ty  d is t r ibu t ion;  heat 

and mass t ransfer  were not considered. Most of h i s  work w a s  d i rec ted  t o  large suc- 

t ions ,  with only a s ingle  case of moderate suction reported. No consideration w a s  

given t o  f l u i d  inject ion.  

ANALYSIS 

The governing equations. - The velocity,  temperature, and diffusion f i e l d s  

around a r o t a t i n g  disk a re  governed by the basic  conservation pr inciples:  

energy, and massj and it i s  these which form the  s t a r t i n g  point of our  s tudy .  

raomentum pr inc ip le  i s  represented by the three Navier-Stokes equations, one f o r  each 

coordinate direct ion;  while energy conservation provides a four th  equation. 

multi-component gas,conservation of mass must be satisfied by t h e  separate components. 

When t h e r e  a re  two components, as i s  the case i n  the  present analysis,  mass conserva- 

t i o n  i s  f u l l y  expressed by a continuity equation f o r  the  mixture and a d i f fus ion  

equation f o r  one component. * 

momentum, 

The 

For a 

This w i l l  guarantee t h a t  mass conservation i s  s a t i s f i e d  f o r  the  second component. * 
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The mathematical statement of the conservation l a w s  appropriate t o  a constant 

property, non-dissipative flow may be wri t ten i n  c y l i n d r i c a l  coordinates as follows: 

Energy conservation 

Mass conservation 

where 

and 

The symbols Vr,VT, and V, represent the usual convective veloci ty  components. So, 

t h e  f i rs t  f i v e  equations remain the  same whether or  not the gas d i f fus ing  out of (or  

i n t o )  the  w a l l  i s  the  same as the  main-stream component. So, within t h e  framework 

of the  constant property analysis,  the veloci ty  and temperature d i s t r i b u t i o n s  a r e  

independent of the  concentration f i e l d .  Equation (6) is  ca l led  the  d i f fus ion  equa- 

t i o n .  

t h e  r a t i o  of the  p a r t i a l  density of component 1 t o  the  t o t a l  density.  

It governs t h e  d i s t r i b u t i o n  of the w e i g h t  f r a c t i o n  W1, which is  defined as 

A s i m i l a r  

d e f i n i t i o n  appl ies  t o  W2. Using the Gibbs-Dalton law, it follows t h a t  

p1 + p2 = p o r  W1 + W2 = 1 (7) 

I n  t h e  der iva t ion  of equation (6), it has been assumed t h a t  the d i f fus ion  v e l o c i t i e s  

are given by Fick ' s  l a w  (ref. l), e.g., 
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I n  t h i s  analysis ,  we w i l l  assign the  subscr ipt  1 t o  ident i fy  the  component d i f fus ing  

through the  w a l l ,  while 2 w i l l  represent t h e  other  component (while would most l i k e l y  

be a i r ) .  

The so lu t ion  of the p a r t i a l  d i f f e r e n t i a l  equations (1) through ( 6 )  would appear, 

at f irst  glance, a too  formidable task .  Fortunately,  we can d r a w  on t h e  experience 

of von K&m& ( r e f .  2 ) ,  who successfully solved the  ve loc i ty  problem f o r  an imper- 

meable d isk  ro t a t ing  i n  a single-component, incompressible f l u i d .  

s imi l a r i t y  transform t o  reduce the p a r t i a l  d i f f e r e n t i a l  equations of h i s  problem t o  

ordinary d i f f e r e n t i a l  equations, which are  e a s i e r  t o  solve. U t i l i z i n g  h i s  idea,  we 

&m&n used a 
OD 

Y 
!3 

introduce the  following new var iab les  

(a) new independent var iab le  

(b) new dependent var iab les  

The s i m i l a r i t y  aspects of t he  transformat-Jn are l inked t o  t h e  supposit ion t h a t  (ex- 

cept  f o r  a simple s t r e t ch ing  of Vr and V ) the  veloci ty ,  temperature and concen- 

%ra t ion  p r o f i l e s  do not change shape at d i f f e ren t  values of r. Also, t he  idea  of 

angular symmetry has been invoked, i . e . ,  a/acp E 0 .  

cp 

Under t h e  transformation, the  conservation equations (1) through ( 6) become 

2 F" = HF1 + F2 - G 

G" = HG' + 2FG 

p '  = H" - HH' 
et' = (Pr)HB'  

H' = -2F 

0'' = (Sc)H@' 
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where Pr and Sc respectively represent t h e  Prandtl  and Schmidt numbers. The 

primes denote d i f f e r e n t i a t i o n  with respect t o  Although t h e  transformation has 

provided a set of ordinary d i f f e r e n t i a l  equations, a closed form solut ion i s  s t i l l  

7 .  

not within our grasp, and numerical techniques must be used. 

venience, it i s  desirable  t o  eliminate F from equations ( la ) ,  (2a),  and (sa), 

For computational con- 

giving 
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H ' - +  0 
G + O  

Simultaneous solut ion of these w i l l  y ie ld  H and G. Then, w i t h  a solut ion f o r  H 

a t  our disposal,  equations (4a) and (6a)  may be attacked. If Pr = Sc and if  the  

e - + o  
@ + O  

boundary conditions coincide, then equations (4a) and (6a) have i d e n t i c a l  solut ions.  

The pressure d i s t r i b u t i o n  i s  somewhat incidental  t o  the  problem and no f u r t h e r  a t -  

ten t ion  w i l l  be given t o  equation (3a). 

Boundary conditions. - The conservation equations give, within the  framework of 

the simplifying assumptions, a complete descr ipt ion of t h e  physical  occurrences 

w i t h i n  the f l u i d .  

t o  specify t h e  boundary conditions. 

Q 

B u t ,  t o  complete the  statement of the  problem, it s t i l l  remains Y 
El 

For the  veloci ty  problem, it w i l l  be supposed that the  no-sl ip  condition of 

viscous flow continues t o  apply a t  t h e  surface of the  disk. Further,  the  convective 

veloci ty  V,, normal t o  the  disk surface spec i f ies  t h e  mass i n j e c t i o n  or with- 

drawal. Far from the disk surface, a l l  f l u i d  v e l o c i t i e s  m u s t  vanish aside from the 

induced axial component. 

For t h e  energy and diffusion equations, the temperature and weight f r a c t i o n  

mus t ,  by cont inui ty  considerations, respectively equal T, and W l w  at the  disk 

surface. A t  l a rge  distances from the  disk, T + T, and W l  + Wl,. 

A formal statement of these conditions is: 

where H, represents  the  dimensionless veloci ty  normal t o  the disk surface.  Pos i t ive  

values of Hw denote f l u i d  in jec t ion ,  while nega.tive values denote suct ion (i.e.,  

mass withdrawal). 
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Up t o  t h i s  point,  we have been at l i b e r t y  t o  assign whatever values we please 

t o  Vzw, Wlw, Wlm, e t c .  

any choices of these parameters. However, as pointed out i n  reference 1, there  a re  

Solutions of the conservation equations can be obtained f o r  

a number of important s i t u a t i o n s  where there  i s  an added physical cons t ra in t  which 

provides a re la t ionship  between V,, and the  boundary values of W1. The tempera- 

t u r e  boundary values may a l so  be i n t e r r e l a t e d  through an additional physical  con- 

s t r a i n t .  I l l u s t r a t i o n s  of these constraints  and relat ionships  w i l l  be given when 

the  heat t r a n s f e r  and mass t r a n s f e r  r e s u l t s  a re  discussed. 
a 
? 

Solutions. - The veloci ty  problem is  governed by the  d i f f e r e n t i a l  equations 

(10) and (11) subject t o  t h e  boundary conditions (12b).  By inspection of these con- 

d i t ions ,  it is seen t h a t  solut ions cannot be obtained u n t i l  numerical values of the  

dimensionless mass-transfer veloci ty  % are prescribed. For a large number of 

values of 

(10) and (11) have been c a r r i e d  out on an I B M  653 e lec t ronic  computer u t i l i z i n g  t h e  

numerical techniques of reference 3. The method is  a forward in tegra t ion  procedure 

and t h e  c r i t i c a l  quant i t ies  which define a so lu t ion  are the der ivat ives  

Q ranging from -4 t o  +5 as l i s t e d  i n  t a b l e  I, solut ions of equations 

H"(0)  and 

G'(0) which are needed t o  start the numerical computation. 

s t a r t i n g  values is  given i n  tab le  I. 

A l i s t i n g  of these 

It w i l l  l a t e r  be shown t h a t  the  H"(0)  and 

G'(0) are a lso  of d i r e c t  application i n  shear s t r e s s  computations. For large posi-  

t i v e  values of 

cant f i g u r e s  were keenly f e l t ,  The information l i s t e d  i n  tab le  I f o r  = 4 and 5 

q, the  l imitat ions of a computing machine which uses eight s i g n i f i -  

is  bel ieved t o  be correct  t o  at l e a s t  the number of places given, b u t  the corre- 

sponding solut ions do not accurately s a t i s f y  t h e  boundary conditions at la rge  11. 

Turning t o  the temperature and diffusion equations ((4a) and (6a) ,  respect ively)  , 
so lu t ions  were car r ied  out f o r  Fr = Sc = 0.7 .  There w a s ,  t h u s ,  no mathemtaical dis-  

t i n c t i o n  between the equations. The needed input d a t a  f o r  

previously mentioned solut ions of equations (10) and (11). 

t i o n  of q, so  too are e(7)  and Q(7). The values of e ' ( 0 )  = @ ' ( O )  obtained from 

H ( 7 )  w a s  supplied by the 

Since H(q)  i s  a func- 
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* these solut ions a re  l i s t e d  i n ' t a b l e  I. 

w a r d  in tegra t ion  procedure and, as w i l l  be shown l a t e r ,  a re  d i r e c t l y  r e l a t e d  t o  the  

These are  the s t a r t i n g  values i n  our f o r -  

heat and mass-transfer coef f ic ien ts .  

For large suction v e l o c i t i e s  (large negative values of 

asymptotic solut ions can be obtained. 

Hw), c e r t a i n  simple 

These w i l l  be discussed i n  a l a t e r  section 

where t h e i r  motivation is  c lear .  

RESULTS 

Velocity d is t r ibu t ions .  - Insight  i n t o  t h e  physical occurrences within t h e  flow a3 
M 
Y 

f i e l d  can be obtained by s tudy  of t h e  veloci ty  p r o f i l e s .  Inasmuch as space l i m i t -  

a t ions  preclude presentation of veloci ty  d a t a  f o r  a l l  the  cases l i s t e d  i n  t a b l e  I, 

we must content ourselves here with graphing the  resul ts  f o r  representat ive 

s i t u a t i o n s .  

We t u r n  our a t t e n t i o n  f irst  t o  the  d i s t r i b u t i o n  of the axial veloci ty  

Pos i t ive  values indicate  an outflow toward the f r e e  stream; while negative values 

V,. 

represent an inflow from t h e  free stream toward the  disk.  The d i s t r i b u t i o n  of V, 

p l o t t e d  as a funct ion of distance normal t o  the  disk i s  presented i n  f igure  2 for 

representat ive values of t h e  dimensionless in jec t ion  (or suction) veloci ty  Q. 

Consider first the case of the  impermeable surface,  = 0. The r o t a t i n g  disk a c t s  

l i k e  a fan ,  drawing f l u i d  ax ia l ly  inward from the surroundings toward the d isk  surface.  

However, because the  surface i s  s o l i d ,  the  inflowing f l u i d  f i n d s  i t s  path blocked, 

and it must reroute  i n t o  a r a d i a l  direct ion where there  i s  no obstruct ion.  So on 

f i g u r e  2, we see t h a t  the negative veloci ty  of inflow, s t a r t i n g  from i t s  l a r g e s t  

value a t  la rge  

f l u i d  escape i n t o  the r a d i a l  direct ion.  

a t  the d isk  surface ( i .e . ,  Hw < 0) .  

z, decreases s teadi ly  as we approach the disk (decreasing z) due t o  

Now, consider the appl icat ion of a suct ion 

Then, besides the fan-l ike pumping of t h e  ro- 

t a t i n g  disk,  there  i s  the  addi t ional  pumping due t o  the suction. 

f l u i d  drawn i n  from the surroundings increases; o r  i n  terms of f i g u r e  2, the  magnitude 

So, the  quantity of 

of VZm increases.  Now, the inflowing f l u i d  has two possible paths.  It may continue 

*Solutions of the 8 equation were not attempted f o r  % = 4 and 5 because the 
ava i lab le  values of H ( 7 )  were not s u f f i c i e n t l y  accurate t o  serve as input data.  
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i t s  inflow through the  suction holes of the disk, or ,  it may reroute  i n t o  t h e  radial 

direct ion.  The path chosen w i l l ,  of course, be t h a t  of l e a s t  res is tance.  As  the 

w a l l  suct ion increases,  escape through the w a l l  becomes easier and easier .  So, w i t h  

Et, becoming increasingly negative, more and more of the  inflow goes d i r e c t l y  i n t o  

t h e  porous disk.  A s  a consequence, Vz tends t o  become almost constant with z. 

Next, consider the  case of blowing ( inject ion)  at the disk surface. I n  t h i s  in-  

stance, the  f l u i d  drawn i n  by the  f a n  action of the  disk f inds  i t s e l f  act ively re- 

rn tarded by t h e  outflowing stream of injected f l u i d .  The greater the blowing veloci ty ,  

w the  more strongly i s  the  inflow opposed. 

a 

1 
The re su l t  i s  a decrease i n  the magnitude 

of VZm with increasing B,. 

streams; and as 

There is, i n  a r e a l  sense, a b a t t l e  between the  two 

H, increases,  the  outflow penetrates  t o  grea te r  distances from the  

d isk  surface.  As a consequence, the cross-over point  between pos i t ive  and negative 

V, is  pushed f a r t h e r  outward. 

These events a re  r e f l e c t e d  by the  r a d i a l  veloci ty  d is t r ibu t ion .  Representative 

p r o f i l e s  are given i n  f igure  3. Since the  r a d i a l  veloci ty  i s  zero both a t  the disk 

surface and In  the  ambient f l u i d ,  there must be a m a x i m u m  value somewhere between. 

The maximum I s  pos i t ive  s ince the r a d i a l  flow is  always outward along the disk.  For 

t h e  impermeable disk (B, = 0),  a l l  the a x i a l  inflow i s  ult imately diver ted i n t o  ra- 

d i a l  flow. With increasing suction, more and more of the inflowing f l u i d  passes d i -  

r e c t l y  i n t o  the porous w a l l j  so, the  r a d i a l  v e l o c i t i e s  decrease as becomes more 

negative. Further, since l e s s  f l u i d  makes the  t u r n  from axial t o  radial  flow, it 

can be accomplished c loser  t o  the surface, and hence (Vr)max occurs at smaller z .  
(KT > 0 

When blowing i s  applied7, t h e  radial veloci ty  must carry away not on ly  the  incoming 

axial  flow, but  a l s o  the in jec ted  f l u i d .  So, the general l e v e l  of the r a d i a l  veloc- 

i t y  is  raised w i t h  increased blowing. But, the f i n e r  d e t a i l s  bear f u r t h e r  discussion. 

F i r s t  of a l l ,  with increasing Q, the  in jec ted  stream m i g h t  be expected t o  sus ta in  

i t s  axial motion t o  grea te r  distances from the w a l l .  So, near t h e  w a l l ,  the  r a d i a l  

ve loc i ty  (which i s  f e d  by diver ted ax ia l  flow} might be expected t o  decrease as the  

blowing increases.  This i s  substantiated by comparing the  curves f o r  % = 1 and 
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= 3 at small values of z .  But ,  as shown i n  t h e  i n s e t  of f i g u r e  3, q u i t e  t h e  

contrary i s  t r u e  a t  very small values of blowing: the  v e l o c i t i e s  near the w a l l  in-  

creases with increasing %. A reasonable explanation i s  t h a t  f o r  small blowing, 

the  in jec ted  stream is not strong enough t o  maintain i t s  axial veloci ty  and i s  d i -  

ver ted immediately i n t o  a r a d i a l  flow, thereby augmenting Vr near the  w a l l .  An 

a l t e r n a t e  demonstration of t h i s  in te res t ing  occurrence near the  disk surface may be 

given as follows: For very small values of z ,  we can write 

'r - = [-HI' (O)] 7 
- ("r) aZw z or  TCD 

So, t h e  radial veloci ty  immediately adjacent t o  the disk is proportional t o  H " ( 0 ) .  

From f i g u r e  6,  where [-H"(O)] i s  p lo t ted  against  Q, we see t h a t  Vr (at small 7 )  

increases with increased blowing from H, 0 t o  about 0.3, and, t h e r e a f t e r  

decreases. 

The tangent ia l  veloci ty  component VT i s  d i r e c t l y  driven through the  ac t ion  of 

v i scos i ty  by the  r o t a t i o n  of the disk. It t h u s  shares a common c h a r a c t e r i s t i c  with 

t h e  boundary layer  forward flow velocity 

dr iver  - t h e  free stream. The e f f e c t  of f l u i d  in jec t ion  or w i t h d r a w a l  on the  tan- 

g e n t i a l  component Vq i s  remarkably similar t o  t h e  well-established e f f e c t s  on Vx. 

Figure 4 shows the d i s t r i b u t i o n  of V* as a function of dis tance normal t o  the  disk cp 

f o r  representat ive values of the mass-transfer veloci ty  It i s  e a s i l y  seen t h a t  

f l u i d  i n j e c t i o n  (% > 0) gives r ise  t o  the familar S-shaped ( i n f l e c t i o n  point)  pro- 

f i l e s ,  the e f f e c t  becoming more pronounced w i t h  increased blowing. Since the pres- 

Vx, which i s  a l so  impelled by an ex terna l  

4. 

ence of an i n f l e c t i o n  point  i s  known t o  des tab i l ize  a laminar boundary layer ,  it 

would be expected t h a t  t r a n s i t i o n  t o  turbulence would occur a t  lower Reynolds num- 

b e r s  as t h e  blowing becomes stronger. The veloci ty  p r o f i l e  becomes progressively 

f la t ter  near the w a l l ,  suggesting the  well-known "blow-off" phenomenon i n  which the 

viscous l a y e r  i s  l i f t e d  off  the  surface. Blow-off i s  characterized by the  condition 

0 The s i m i l a r i t y  between VT and Vx i s  b e s t  seen by turning f igure  4 top t o  
bottom. 
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I n  the  p l o t  of G ' ( 0 )  against  t h e  blowing parameter (fig. 61, it i s  seen that  G ' ( 0 )  

i s  indeed approaching zero with increasing 

blow-off point because of the l i m i t a t i o n  of an eight-place computer. 

f igure  4, it may be observed t h a t  suction (H,> 0) has i t s  u s u a l  e f f e c t  of thinning 

t h e  viscous layer ,  thereby increasing the s t a b i l i t y  of the  laminar flow. 

q, but we were unable t o  f i n d  the  exact 

Returning t o  

Temperature and concentration d is t r ibu t ions .  - The d i s t r i b u t i o n  of t h e  dimen- 

s ion less  temperature and concentration as a function of distance from the disk i s  

2 given i n  f igure  5 f o r  representat ive values of q. Since we have selected Pr = Sc, ' t h e  same curves and a s i m i l a r  discussion appl ies  f o r  both 0 and 0; and f o r  

b r e v i t y ' s  sake, we will only make reference t o  the  temperature. 

i n j e c t i o n  (%> 0) i s  t o  f i l l  the space immediately adjacent t o  the  disk w i t h  f l u i d  

having nearly the  same temperature as t h a t  of the  disk. 

"he act ion of f l u i d  

As the blowing becomes 

stronger,  so then does the  blanket extend t o  greater  distances from the surface.  A s  

shown on f igure  5, these e f f e c t s  are manifested by the  progressive f l a t t e n i n g  of the  

temperature p r o f i l e  adjacent t o  the  disk. 

t i v e  insu la t ing  layer,  decreasing the heat t r a n s f e r  from the d isk  ( f ig .  7) .  

on t h e  other  hand, serves t h e  function of bringing large quant i t ies  of ambient f l u i d  

Thus, the  in jec ted  f l u i d  forms an effec-  

Suction, 

i n t o  t h e  immediate neighborhood of t h e  disk surface. A s  a consequence of the in- 

creased heat consuming a b i l i t y  of t h i s  augment flow, the  temperature drops quickly 

as we proceed away from the  disk. 

c lose t o  the  surface increases t h e  heat t r a n s f e r  (fig.  7 ) .  

The presence of f l u i d  at near-ambient temperature 

Shear stress and shaf t  torque. - The act ion of v i scos i ty  i n  the  f l u i d  adjacent 

t o  t h e  d isk  tends t o  set-up a tangent ia l  shear s t r e s s  which opposes the  r o t a t i o n  of 

t h e  disk.  

t a i n  a steady ro ta t ion .  To f i n d  the  tangent ia l  stress T we apply the Newtonian 

A s  a consequence, it i s  necessary t o  provide torque at  the  shaf t  t o  main- 

0.' 

shear formula 

I- cp - , (qp /az ) ,  

I n  terms of the variable: of the  analysis,  t h i s  expression becomes 
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The shaf t  torque M required t o  overcome the  shear on one s ide of a r o t a t i n g  disk 

where ro i s  the disk radius .  Ut i l iz ing  equation (13b), there  i s  obtained 

WJrr&(W 1 '1' = -Gl(O) 04b) 

So, both t h e  tangent ia l  shear T and the torque M are proportional t o  the  slope 

G'(0) of t h e  tangent ia l  veloci ty  p r o f i l e  which has been l i s t e d  i n  t a b l e  I. 

torque and tangent ia l  shear resul ts  a re  p l o t t e d  on f i g u r e  6 as a funct ion of the  

mass transfer veloci ty  R& 

'p 

The 
a 

-f 
I4 

The e f f e c t  of blowing is  t o  decrease the 

tangent ia l  shear and t h e  torque requirements. These quant i t ies  take on zero values 

at the  blow-off point,  but computing l imi ta t ions  prevented the determination of t h i s  

condition. The e f f e c t s  of suct ion are opposite t o  those of blowing. These f indings 

r e f l e c t  the changes i n  tangent ia l  velocity p r o f i l e  as previously discussed and are 

q u a l i t a t i v e l y  s i m i l a r  t o  t h e  effects of mass t r a n s f e r  on the sk in  f r i c t i o n  i n  a 

boundary layer  flow. 

There i s  a l s o  a surface shear s t r e s s  -rr i n  the r a d i a l  d i r e c t i o n  which, prac- 

t i c a l l y  speaking, i s  of lesser importance than i s  the tangent ia l  s t r e s s .  Again, u s -  

ing  t h e  Newton shear r e l a t i o n s  and then introducing the  var iables  of t h e  analysis ,  

there is  obtained 

This dimensionless shear stress has been p l o t t e d  on f igure  6. 

which has already been discussed i n  r e l a t i o n  t o  the  veloci ty  p r o f i l e s ,  is achieved 

A maximum value, 

at about X, = 0.3. 

Heat t r a n s f e r  and surface temperature. - The heat t r a n s f e r  from t h e  disk s u r -  

face  t o  t h e  f l u i d  i s  computed by application of F o u r i e r ' s  l a w  

= -k (aT/az), 

Introducing the transformed var iables ,  the  expression f o r  q becomes 

q = -k (T, - T,) @r/' @'((I) 
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It is  customary t o  rephrase the heat t r ans fe r  r e s u l t s  i n  terms of a heat t r ans fe r  

coef f ic ien t  and a Nusselt number, which me defined as follows 

h(  v/c.o)’/‘ 
k NU = 9 

Tw - Too’ h z  

where (v/co) plays the r o l e  of a cha rac t e r i s t i c  length. With t h i s ,  equation (16) 

becomes 
NU = -ei(o> 

The N u s s e l t  number resul ts  a r e  presented i n  f i g u r e  7 as a func t ion  of the dimension- 

8 less mass-transfer veloci ty  H,. As  has already been noted, t h e  e f f e c t  of f l u i d  in -  

El j ec t ion  (% > 0) i s  t o  s ign i f i can t ly  decrease the  heat t r a n s f e r  (and hence, the  
? 

N u s s e l t  number) by blanketing the surface w i t h  f l u i d  whose temperature i s  close t o  

T,. Suction has an opposite e f f e c t  on the heat t r ans fe r ,  s ince f l u i d  a t  near- 

ambient temperature is  brought t o  the  neighborhood of t h e  disk surface. 

With these  hea t - t ransfer  results a t  our disposal,  we may proceed t o  make ap- 

p l i c a t i o n  t o  spec i f ic  s i t ua t ions .  

by a gas. 

heated i n  i t s  course of flow through the  w a l l .  

Consider t h e  s i t u a t i o n  of mass t r a n s f e r  cooling 
(from a supply tank) 

The coolant gas en te r s  t he  porous disk / at  a temperature Te and i s  

The flow passages are so arranged 

that  the coolant emerges a t  a temperature 

It is of i n t e r e s t  t o  determine how 

T,, equal t o  that of the d isk  surface. 

i s  r e l a t e d  t o  the  other  parameters of the Tw 

problem. I n  the absence of heat  losses  by conduction and rad ia t ion ,  an energy bal- 

ance on a cont ro l  volume spanning the thickness of the  porous w a l l  y i e l d s  

The l e f t  hand side i s  the energy absorbed by the coolant gas, while the  r i g h t  s ide 

i s  the heat t r ans fe r r ed  t o  the  disk surface from the ambient f l u id .  Borrowing the  

r e s u l t  that 

Nusselt and Prandt l  numbers, equation (19a) may be rephrased as 

ml = pVzw from equation (28) and introducing the  de f in i t i ons  of the 

Suppose that the  en ter ing  coolant temperature 

T, are known. Further,  when the blowing r a t e  II, i s  presented, the value of Nu 

Te and t h e  free-stream condition 
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may be read from f igure  7. Hence, equation (19b) permits the determination of the  

temperature Tw of the  disk surface as  follows 

T, (&)+ Te 
Tw = Nu ( 1 9 4  

1 +-  -Ezr 
It is  c l e a r  from equation (19c) that increased blowing causes t h e  w a l l  temperature 

Tw t o  approach more and more closely t o  Te. 

be solved t o  provide e i t h e r  the  blowing ve loc i ty  o r  the  coolant temperature needed 

As an a l te rna t ive ,  equation (19b) can 

a) to t o  maintain a given Tw. 

w 'j( 
Equations (19b) or  (19c) i l l u s t r a t e  t h e  statement, made i n  discussing the 

boundary conditions, t h a t  there  a re  important appl icat ions i n  which all of the 

boundary temperatures cannot be prescribed independently. 

Additional examples showing the  appl icat ion of the  Nusselt number results a re  

given i n  reference 1. 

Mass t ransfer .  - The previous der ivat ion of t h e  heat- t ransfer  coef f ic ien t  and 

Nusselt number can be duplicated f o r  diffusion. 

a t  the  d isk  surface by d i f fus ion  alone is  given by Fick ' s  l a w  (8) as 

For component 1, the mass t r a n s f e r  

Now, defining a d i f fus iona l  t r a n s f e r  coef f ic ien t  and d i f fus iona l  

and introducing the var iab les  of the analysis,  there i s  obtained 

This i s  i d e n t i c a l  t o  the  r e s u l t  f o r  the heat t r a n s f e r  Nusselt number which has al-  

ready been p l o t t e d  on f igure  7. 

Now, the  t o t a l  mass flow of component 1 at the disk surface is  due t o  both d i f -  

fusion (subscr ipt  d) and convection (subscript  c). So, we write 

ml = + rnlc ( 2 3 4  

Convection contributes an amount 

computed from equations (21) and (22 ) .  

plwVzw, while the  d i f fus iona l  contr ibut ion can be 

Introducing t h i s  information i n t o  (23a) and 
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rearranging, we f i n d  

Proceeding i n  a s i m i l a r  way f o r  component 2, and using the  f a c t  tha t  

there  is  obtained 

W1 + W2 i 1, 

The combined mass t r a n s f e r  of both components at the surface i s  given by 

a3 m = ml + m2 
M 
1 Adding equations (23b) and (24), we ge t  

(25b) 
m = Hw or m x pVzw &p 

So, as expected, it is the convective velocity V,, which t ranspor t s  mass f o r  the 

combined flow. 

Now, we t u r n  t o  applications.  I n  the discussion of the boundary conditions, it 

w a s  noted t h a t  i n  many s i t u a t i o n s  there  i s  a physical cons t ra in t  which r e l a t e s  the  

ve loc i ty  Vzw and the mass f r a c t i o n s  Wlw and W1&. The cons t ra in t  which i s  most 

f requent ly  encountered is the condition of no ne t  mass flow of component 2 (e.g., - 
the  main stream component) i n t o  o r  out of the disk surface. When the mass addi t ion 

o r  removal of component 1 i s  due t o  evaporation, sublimation, o r  freezing, it i s  

c l e a r  tha t  component 2 w i l l  be unable t o  en ter  or  leave the surface. I n  the case of 

a coolant gas passing through a porous wall, the condition of no net  mass flow of 

component 2 i n t o  the w a l l  i s  s t i l l  correct,  provided t h a t  the coolant gas i n  the  

supply tank i s  pure component 2. Proceeding t o  the mathematical formulation of 
9 

t h i s  cons t ra in t ,  we observe that 

m2 P 0 = mZd + mZc 

So, t o  m a k e  

a convective outflow. 

m2 = 0, the d i f fus ive  flow of component 2 in to  the w a l l  i s  balanced by 

Ut i l iz ing  equation (24) w i t h  m2 I 0, we g e t  

"Additional discussion w i l l  be found i n  reference 1. 
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or ,  i n  terms of physical  var iab les  

v,, = - 1 - Wlw (2)w 
For a given q, Nud i s  known. So, equation (26) expresses L e  f a c t  tha t  f o r  no 

net mass flow of component 2 i n t o  the  w a l l ,  only two of the quan t i t i e s  Wlw, Wlm, 

and % may be se lec ted  independently. When m2 = 0, it follows from equations 

(25a) and (2%) t h a t  

m l  = m - PVZW (28) 
(0 
M 
7 w 

An important spec ia l  case of mass t r ans fe r  cooling occurs when the mass f r a c -  

Then, equation t i o n  of t he  coolant gas i s  zero i n  the  free stream, i.e., Wlm = 0. 

(26) becomes 

(29) 
1 

'lw E 1 + Nud/&(Sc) 

So, Wlw i s  fixed when IE, i s  specif ied and vice-versa. U t i l i z ing  the  N u s s e l t  num- 

ber r e s u l t s  of f i gu re  7, we have p lo t t ed  the va r i a t ion  of W l w  with % on f i g u r e  

8. 

with blowing rate and i s  grea te r  than 0.95 f o r  

It i s  seen that the coolant mass f r ac t ion  (Wlw) at the  w a l l  increases  rap id ly  

% > 1.3. 

Thickness of viscous and thermal layers;  ambient inflow. - Our so lu t ions  show 

t h a t  t he  s ign i f i can t  ve loc i ty  and temperature va r i a t ions  i n  t h e  f l u i d  are confined 

t o  the  region adjacent t o  the disk.  To def ine the thickness of these layers ,  we u s e  

c e r t a i n  standard measures. 

The first of these i s  t h e  displacement thickness.  Inasmuch as we are deal ing 

with a three-dimensional problem, the  i n i t i a l  thought might be t o  evaluate separate  

displacement thicknesses f o r  both the  radial and tangent ia l  d i rec t ions .  However, 

s ince t h e  r a d i a l  flow i s  zero both at the d isk  surface and a t  i n f i n i t y ,  a r a d i a l  

displacement thickness  would have very l i t t l e  meaning. Then, f o r  t h e  t angen t i a l  

d i rec t ion ,  we def ine a displacement thickness as 

'dis = 2 dz or tjdis/(v/cb)1/2 = a" G dll 

gives the  thickness of a f i c t i t i o u s  l aye r  of f l u i d  which i s  'dis I n  phys ica l  terms, 

r o t a t i n g  at a uniform t angen t i a l  veloci ty  m and i s  carrying a t angen t i a l  mass 
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flow equal t o  that car r ied  by the  actual  tangent ia l  veloci ty  d i s t r ibu t ion .  Values 

of the displacement thickness a re  given i n  t ab le  I. It is seen t h a t  suction appre- 

ciably reduces the thickness of t he  viscous layer,  while blowing increases the 

thickness. 

A momentum thickness fo r  flow about a ro t a t ing  disk has been defined by Stuar t  

(2)  as 

dc &, While t h i s  expression has a form s i m i l a r  t o  t h a t  f o r  the  boundary-layer momentum 

t h i c k n e p ,  we axe unable t o  give it a c lear  physical  meaning. 

l i s t e d  i n  t ab le  I and show qual i ta t ive  trends s i m i l a r  t o  these f o r  

Values of 6m are  

6dis. 

As a measure of t he  extent of the thermal layer,  we may introduce a thermal 

thickness based on the temperature excess T - T, above the ambient f l u id .  Then, 

Physically speaking, S, 

Tw whose integrated temperature excess over T, i s  iden t i ca l  with tha t  of the ac tua l  

temperature d is t r ibu t ion .  

i s  the  thickness of a f i c t i t i o u s  f l u i d  l a y e r  at temperature 

Numerical values of the thermal thickness are  l i s t e d  i n  

t ab le  I as a function of t he  mass t ransfer  veloci ty  

thickness increases; while with suction, it decreases. 

q. With blowing, the thermal 

The extent  of the thermal layer  i s  sometimes characterized by a convection 

thickness (ref. 9, pp. 118-119). I n  reference 9, the def in i t ion  of such a thickness 

w a s  motivated by the  r e s u l t s  of an over-all  energy balance. Se t t ing  up such a ba l -  

ance f o r  the  present problem, we f i n d  

The i n t e g r a l  represents the convection of ener@;y i n  the  r a d i a l  d i rec t ion .  So, i n  

analogy t o  previous work, we define 
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The convective thickness can be evaluated using f igure  7 or  t ab le  I, s ince 

Nu = -e ' (O)  . It may e a s i l y  be v e r i f i e d  tha.t 6, increases w i t h  blowing and de- 

creases with suction. 

It m3y a l s o  be of i n t e r e s t  t o  know the  quantity of ambient f l u i d  which i s  drawn 

inward toward the  r o t a t i n g  disk. The inflow veloci ty  of the ambient f l u i d  i s  V,, 

and i t s  dimensionless counterpart i s  &. A l i s t i n g  of Eb, values i s  given i n  

t a b l e  I. 

t i o n  and decreases with blowing. The information given i n  t a b l e  I may a l s o  be t o  

compute t h e  r a d i a l  flow. Imagine a c y l i n d r i c a l  control  surface of radius r ex- 

As  expected on the b a s i s  of previous discussion, H, increases with suc- 
a 

-T w 

tending from t h e  disk surface t o  the ambient f l u i d .  

t h i s  c y l i n d r i c a l  surface is  

Then, t h e  flow passing through 

2 Radial flow = p m  [V,, - Vzm] = prir2(uv)1/2 [k - Hm] 

For laxge suction, t a b l e  I shows t h a t  

r a d i a l  flow. The e f f e c t  of blowing i s  t o  increase the radial flow. 

% - H is  very small, indicat ing a small 
m 

ASYMPTOTIC SOLUTIONS 

For la rge  suct ion (i.e., large negative values of Hw), it i s  possible t o  f ind  

simple asymptotic solut ions of the  governing equations. 

t i o n  i s  the f a c t ,  graphically displayed on f igure  2,  t h a t  the axial veloci ty  

i s  e s s e n t i a l l y  constant throughout the  flow when t h e  suction i s  strong. 

t h e  dimensionless var iab les  of t h e  analysis,  t h i s  means that 

dependent of 7 f o r  a fixed value of %. With t h i s ,  equations (4a) and ( & )  

become 

The key t o  the s implif ica-  

V, 
I n  terms of 

H is  e s s e n t i a l l y  in-  

8" = (Pr)E$' and @I' = (Sc)H$' ( 3 4 4  

A so lu t ion  s a t i s f y i n g  the  boundary conditions i s  

from which it follows t h a t  

e l ( o )  = W q Y  Q q o )  = ( S C ) k  ( 3 4 4  

For Pr = Sc = 0.7 and Hw = -4.0, equation (34c) pred ic t s  t h a t  e ' ( 0 )  = Q'(0) = - 2 . 8 .  

This i s  i n  excel lent  agreement with the value -2.802 which appears i n  t a b l e  I. 
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Proceeding i n  the same manner, it i s  easy t o  show t h a t  so lu t ion  of equation (11) f o r  

G i s  

The 

given i n  table I. 

G'(0) predic t ion  of equation (35) fo r  Q = -4 i s  very c lose  t o  the value 4.005 

Continuing, we m a y  use equation (10) t o  pred ic t  values of "'(0). Noting t h a t  

(H ' )2 /2  is  smaller than the other  terms, we i n t eg ra t e  between l i m i t s  of 7 = 0 

and 7 P 00 and get  a3 

3 w 
For 

with t h e  value of -0.2495 of t a b l e  I. 

= -4, equation (36) gives H" (0) = -0.25, which i s  i n  exce l len t  agreement 

With these r e s u l t s ,  it is easy t o  derive that the  thickness parameters take the  

following form f o r  la rge  negative values of B, 
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TABLE I. - SOME IMPORTANT PROPERTIES OF TRE SOLUTIONS 

-G' (0) 

4.005 
3.012 
2.521 
2.039 
1.580 
1.328 
1.036 

.8016 

.7033 

.6497 

.6159 

.5916 

.5758 

.SO22 

.4364 

. a 6 3  

.3779 

.3511 

.3022 

.1885 

.1360 
,06029 
.0289 
.0155 

2.802 
2.106 
1.759 
1.418 
1.087 

.8998 

.6730 .. 4798 

.3969 
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.3231 
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2.106 
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Fig. 1 - Physical model and coordinates. 
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